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Abstract

Purpose

Simultaneous multislice (SMS) imaging is a useful way to accelerate fMRI. As acceleration

becomes more aggressive, an increasingly larger number of receive coils are required to separate

the slices, which significantly increases the computational burden. We propose a coil compression

method that works with concentric ring non-Cartesian SMS imaging and should work with

Cartesian SMS as well. We evaluate the method on fMRI scans of several subjects and compare

it to standard coil compression methods.

Methods

The proposed method uses a slice-separation k-space kernel to simultaneously compress coil data

into a set of virtual coils. Five subjects were scanned using both non-SMS fMRI and SMS fMRI

with 3 simultaneous slices. The SMS fMRI scans were processed using the proposed method,

along with other conventional methods. Code is available at https://github.com/alcu/sms.

Results

The proposed method maintained functional activation with a fewer number of virtual coils than

standard SMS coil compression methods. Compression of non-SMS fMRI maintained activation

with a slightly lower number of virtual coils than the proposed method, but does not have the

acceleration advantages of SMS fMRI.

Conclusion

The proposed method is a practical way to compress and reconstruct concentric ring SMS data

and improves the preservation of functional activation over standard coil compression methods

in fMRI.
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Introduction

Simultaneous multislice (SMS) parallel imaging is frequently used in fMRI to accelerate acquisition

while maintaining the necessary TE for BOLD contrast. However, many coils are desired for slice

separation, which can increase the computational load by several factors during reconstruction.

One way to reduce the amount of data used in processing is to exploit the redundancy of the

signal from different coils through coil compression. By combining the original coil data into a

new, reduced set of virtual coils, the amount of data is decreased by several factors, which reduces

the computational burden for reconstruction. We propose GeneRalized Autocalibrating partially

parallel acquisitions-Based Simultaneous-Multislice-Acquired Coil Compression (GRABSMACC),

a method that uses the slice-separation kernel to simultaneously compress the k-space data before
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it is transformed into the image domain. Similarly to GRAPPA (1), GRABSMACC does not rely

on accurate sensitivity maps for reconstruction, which is an advantage over SENSE (2) in parallel

imaging.

In fMRI, efficient single-shot kx-ky trajectories such as a spiral-in have been recommended

for fMRI due to their shorter readout times and improved signal recovery in the presence of

susceptibility-induced gradients (3, 4). However, the spiral-in is not well-suited for GRAPPA

because of the irregularity of the sampling pattern in both the angular and radial directions. In

addition, the use of a readout z-gradient (5) in SMS imaging further disrupts the regularity in a

spiral readout, as shown in Figure 5b of Ref. (6) and Figure 2d of Ref. (7). These figures show that

the z-gradient blips create large gaps in each spiral platter. We propose an out-to-in concentric

ring trajectory that has good sampling regularity for a GRAPPA kernel, but still retains most of

the susceptibility benefits of the more established spiral-in. The concentric ring trajectory requires

more samples than a spiral-in, but is still more efficient than Cartesian patterns such as EPI. In this

work, GRABSMACC is demonstrated with the non-Cartesian concentric ring sampling pattern, but

should also work with Cartesian trajectories such as EPI.

King et al. (8, 9) implemented coil compression in hardware by changing the image signal basis

to one composed of the eigenvectors of the noise covariance matrix. The hardware implementation

has SNR benefits, but lacks the flexibility of software coil compression, especially with varying

levels of acceleration in different directions. On the software side, Buehrer et al. (10) developed

a method that reduces image noise in parallel MRI by taking advantage of coil noise covariance

and the coil sensitivities for aliased voxels. Not only does this method rely on sensitivities and

the issues that go along with the acquisition and accuracy of sensitivity maps, but it requires the

undersampling to produce a simple point spread function for it to be practical. Huang et al. (11)

used Principle Component Analysis in the k-domain, circumventing the need for coil sensitivities

and noise covariance. More recently, Zhang et al. (12) reduced the number of required virtual

coils by performing a Singular Value Decomposition (SVD) to compress data in a hybrid image-k-

domain. This method was implemented by Cauley et al. and shown to work well with a blipped-

EPI trajectory in SMS (13). However, the method relies on a Fourier Transform in a fully sampled

direction to obtain hybrid space, which is not possible for many non-Cartesian trajectories, such as

our implementation of a concentric ring readout. Beatty et al. (14) have proposed a new method

that combines the k-space reconstruction kernel with a coil compression kernel. This method is

similar to GRABSMACC in that the unaliasing process is also responsible for coil compression.

However, in the current work, we extend this general idea to SMS imaging with non-Cartesian

trajectories.

Because GRABSMACC uses the slice-separation kernel to simultaneously compress k-space

data, the kernel convolution step for slice separation uses a larger dataset when compared to

standard SVD coil compression, which only operates on pre-compressed data. Although this comes

at an increased computation cost when compared to standard SVD compression, we show that

GRABSMACC preserves functional activation better at higher levels of compression, thus enabling
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a fewer number of virtual coils to be used when compared to standard compression. Furthermore,

the main computational burden in this non-Cartesian SMS reconstruction lies not in the slice

separation process, but in the transformation of unaliased k-space data for each coil into the image

domain prior to coil combination. Therefore, the reduction in the number of required coils for

GRABSMACC results in significant computational time savings, especially when reconstructing

multiple fMRI studies.

This work provides several novel contributions: (a) the development of a blipped, concentric-

ring-in k-space trajectory with the sampling regularity necessary for implementation of slice-

GRAPPA, (b) the development and evaluation of GRABSMACC, a practical method for coil com-

pression and reconstruction of both Cartesian and non-Cartesian SMS fMRI, and (c) the analysis of

coil compression performance and computation time in fMRI with both non-SMS and SMS imag-

ing. With coil compression in fMRI, care must be taken to ensure that the functional activation

in an fMRI scan is not reduced in exchange for data compression. In this paper, we present the

methodology of GRABSMACC and analyze fMRI scans of several subjects to compare activation

performance, image artifacts, SNR, and reconstruction speed for different levels of coil compres-

sion using GRABSMACC, standard coil compression in GRAPPA-based and SENSE-based SMS

reconstruction, and coil compression in traditional, non-SMS imaging.

Methods

Along with GRABSMACC, all algorithms, reconstruction methods, and coil compression methods

described in this section are available at https://github.com/alcu/sms.

Concentric Ring Trajectory

The out-to-in concentric ring trajectory was developed using a numerical algorithm based on

Ref. (15). As shown in Figure 1a, the kx-ky trajectory follows the path of multiple centered,

concentric circles with radii spread evenly along the radial direction, along with a sample at the

k-space origin. Transitions between circles follow a path created using 2 quarter-circles tangent

to the main concentric rings, as shown in Figure 1b. All reconstruction and coil compression

operations, including ones for GRAPPA, SENSE, non-simultaneous multislice imaging, and their

associated field maps and calibration scans, used data obtained only in the concentric rings and

origin, ignoring data sampled during all transitions. In order to provide better sampling regular-

ity for GRAPPA, the transition paths were not started until each concentric circle was entirely

complete. The numerical algorithm samples points along the k-space path with step sizes that are

as a large as possible, while still satisfying maximum gradient amplitude and slew rate hardware

constraints. It does this by using the maximum slew rate at each step until the curvature of the

path is too great. When this happens, the algorithm re-samples a previous point with a smaller

step size, equivalent to backing up and slowing down the trajectory. The result is an efficient and

accurate trajectory that is consistent with hardware limits.
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Figure 1: (a) kx-ky components of the concentric ring k-space trajectory used in this work. Bound-
aries of angular sectors for GRAPPA are shown with dash-dotted blue lines. (b) Close-up of ring
transitions with “x” markers indicating where samples were acquired.

In order to decrease the geometry factor in SMS imaging (5), z-gradient blips were used during

the concentric ring readout. The z blips were timed to occur only during the kx-ky transitions

between rings so that the entirety of each concentric ring remained in a single kz plane, as shown in

Figure 2a. The readout z-gradient consisted of a repeating set of (nslc − 1) positive blips followed

by a rewinder negative blip and were designed according to the necessary Fourier requirements

for nslc simultaneously acquired slices (multiband factor), each separated by a distance of nacqdslc,

where nacq is the number of SMS acquisitions per TR, and dslc is the distance between adjacent

individual slices (6). Figure 2b shows the aliasing pattern produced by the blipped concentric ring

trajectory. The middle slice is located at z-isocenter, and therefore is not modulated. The use of

tangent quarter-circles for the transition paths may not be optimal in terms of speed, but because

it was desired to have the z blips entirely within each transition, the quarter-circle transitions were

more than adequate to achieve the minimum time needed for each z blip.

Slice-GRAPPA and Split Slice-GRAPPA

For each SMS fMRI run, a calibration scan was necessarily acquired for slice separation and recon-

struction. The calibration scan consisted of non-simultaneous slices acquired at the same z locations

as the SMS acquisitions. The calibration acquisitions used exactly the same kx-ky-kz trajectory

as the SMS acquisitions did, but with a conventional non-simultaneous RF pulse. The calibration

scan used the same TR as the SMS fMRI scan to preserve image contrast and was acquired shortly

before each fMRI run.
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Figure 2: (a) Three-dimensional concentric ring k-space trajectory. (b) Modulation pattern result-
ing from a blipped concentric ring trajectory for 3 simultaneous slices. The numbers at the top
indicate the slice number, where contiguous slices in the volume are numbered 1 through 39. The
20th slice is acquired at z-isocenter, assuming an axial acquisition. The top row shows the original,
non-modulated, 3 simultaneous slices. The bottom row shows what the blipped modulation does
to the various slices. Slice 20 is unaffected because it is acquired at z-isocenter. The blipped-EPI
equivalent of slices 7 and 33 would be a simple FOV shift.

In addition to the calibration scan, field maps were obtained by acquiring non-simultaneous slices

at the same z locations as the SMS acquisitions, with the same kx-ky concentric ring trajectory.

No readout z-gradient was used for the field maps. The brain volume was acquired two times, with

one time frame having an echo time delayed by 2 ms with respect to the other so that the phase

difference could be used for a standard field map computation.

A slice-GRAPPA (SG) reconstruction process based on Refs. (16) and (5) was developed to sep-

arate and reconstruct the SMS data. First, all acquired data from all coils were linearly interpolated

to a constant angular velocity trajectory. Next, the interpolated data were divided into angular

sectors as depicted in Figure 1a. Interpolated data from each angular sector were unwrapped and

arranged into a Cartesian grid according to the radial and angular location of each sample. SG

was then applied separately to each sector according to the equation

SsrcW = Strg, [1]

where Ssrc is a “source” matrix containing interpolated data from all coils for one SMS acquisition,

W is a matrix of GRAPPA kernels, and Strg is a “target” matrix containing interpolated non-

simultaneous calibration data. Split slice-GRAPPA (SP-SG) (17) was also implemented and applied

to each sector according to Eq. [1], but with different dimensions for Ssrc and Strg when compared

to SG.
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For each SMS fMRI run, a simulated SMS acquisition was generated for Ssrc by summing

calibration slices, and the original, non-summed calibration slices were used for Strg. The kernels

in W were then computed from Ssrc and Strg in Eq. [1] using least squares. To separate the

simultaneous slices in the SMS fMRI run, the acquired data from each time frame was used for

Ssrc, and Eq. [1] was used again, this time to compute k-space data for each separate slice in Strg.

Data from each k-space sector were then reassembled back into their original interpolated con-

centric ring locations and demodulated with the negative of the phase imparted by the blipped read-

out z-gradient. Finally, conjugate gradient using a non-uniform fast Fourier transform (NUFFT) (18,

19) with B0 inhomogeneity correction (20) and finite difference regularization was used to transform

k-space data into coil images, and the coil images were combined using the standard square-root-

sum-of-squares method.

Standard Coil Compression in Slice-GRAPPA and Split Slice-GRAPPA

Standard coil compression in SG and SP-SG compresses the SMS k-space data before the entire

GRAPPA process described previously. Each acquisition in a time frame is compressed separately,

resulting in nacq compression matrices. First, nstack number of time frames, located in the middle

of the fMRI run, are stacked into a matrix Sstack, with data from each coil arranged along a single

column of Sstack. The dimensions of Sstack are nstackndat-by-ncoil, where ndat is the number of

samples located only in the concentric rings, and ncoil is the full number of coils in the receive

array. The compression matrix, Vcomp, is calculated by computing the SVD of Sstack, described by

Sstack = UΣV ∗, [2]

and using the first nvcoil columns of V as Vcomp, where nvcoil is the number of virtual coils to which

the data should be compressed.

To compress each fMRI time frame, each SMS acquisition from that frame is assembled into a

matrix Sfull and multiplied by the corresponding Vcomp for that SMS acquisition to obtain

Scomp = SfullVcomp, [3]

where Scomp contains the compressed SMS acquisition and has dimensions ndat-by-nvcoil. The

matrix Sfull is constructed in the same manner as Sstack, except with data from only one time

frame, and therefore has dimensions ndat-by-ncoil. Before calculating W in Eq. [1], the calibration

data must be compressed with the same Vcomp matrices before being interpolated and arranged

into Strg. Specifically, the calibration scan has ntot = nslcnacq acquisitions, and the nslc non-

simultaneous calibration acquisitions that match the excitation locations of a single SMS acquisition

should each use the same Vcomp as that single SMS acquisition. Once the SMS and calibration data

are compressed, the previously described SG or SP-SG process is performed with a reduced coil

dimension of nvcoil for all matrices in Eq. [1].
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GRABSMACC

In contrast, our proposed method for coil compression, GRABSMACC, only compresses the “tar-

get” data and not the “source” data, and uses the GRAPPA kernel for both slice separation and

coil compression. In this method, the non-simultaneous acquisitions from the calibration scan are

used to compute the compression matrices Vcomp. Specifically, the calibration data is used for

Sstack in Eq. [2], and the first nvcoil columns of V are used to construct Vcomp. Since there are

ntot = nslcnacq calibration acquisitions, or equivalently, slices, there are ntot number of Vcomp ma-

trices, one for each slice. Each slice of the calibration scan is arranged into an Sfull, and each Sfull

is then compressed using Eq. [3].

Once the calibration data is compressed to nvcoil coils, it is used in Eq. [1] as Strg for computation

of W . No coil compression is done on data used for Ssrc. Therefore, in GRABSMACC, the source

data matrix has full coil dimensions, the target matrix has compressed coil dimensions, and the

kernel has both. Specifically, in SG the dimensions of Ssrc are nrep-by-nkernncoil, those for Strg are

nrep-by-nslcnvcoil, and those for W are nkernncoil-by-nslcnvcoil, where nrep is the number of GRAPPA

kernel repetitions and nkern is the number of weights in the kernel for a single coil. In SP-SG, the

dimensions of Ssrc are nrepnslc-by-nkernncoil, those for Strg are nrepnslc-by-nslcnvcoil, and those for

W remain unchanged from SG.

To separate the slices in GRABSMACC, uncompressed k-space data from each acquisition of

each time frame is used for Ssrc, and Eq. [1] is used to compute the compressed, separated slices

in Strg. Hence, multiplication by W performs a simultaneous slice separation and compression

of k-space data. Finally, the slice-separated data can be transformed into images by the same

conjugate gradient and square-root-sum-of-squares process described previously.

SENSE

The discretized SENSE (2) reconstruction model for one acquisition of one time frame is given by
s1

s2
...

sncoil

 =


M1Q1C1,1 M2Q2C1,2 · · · Mnslc

Qnslc
C1,nslc

M1Q1C2,1 M2Q2C2,2 · · · Mnslc
Qnslc

C2,nslc

...
...

. . .
...

M1Q1Cncoil,1 M2Q2Cncoil,2 · · · Mnslc
Qnslc

Cncoil,nslc




x1

x2

...

xnslc

 , [4]

where su is k-space data from coil u, xv is simultaneous slice v, Cu,v contains the sensitivity of coil u

to simultaneous slice v, Qv is the 2-dimensional Fourier transform operator with B0 inhomogeneity

correction for slice v, Mv contains the phase imparted by the z-gradient modulation to slice v, and

nslc is the number of simultaneously acquired slices for each SMS acquisition. For reconstruction,

the xv vector was solved for in Eq. [4] using conjugate gradient with finite difference regularization.

Because xv contains multiple slices, the finite difference operator was constructed to only take

differences within each slice and not across simultaneous slices. The Qv matrices were implemented

by a NUFFT (18, 19) with B0 inhomogeneity correction (20).
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ESPIRiT (21) was used to generate sensitivity maps from data acquired during the non-delayed

field map acquisition. First, individual coil images were reconstructed with conjugate gradient using

NUFFTs, inhomogeneity correction, and finite difference regularization. Then, a 2-dimensional

Fourier transform was done on each coil image to obtain Cartesian k-space data. ESPIRiT was

then used on this field-corrected k-space data to obtain sensitivity maps. Only the primary set of

ncoil maps from ESPIRiT was used for all SENSE reconstructions.

Standard Coil Compression in SENSE

Standard coil compression for SENSE was done exactly the same as for standard coil compression

in SG and SP-SG, described previously. However, a new set of virtual coil sensitivities need to

be computed for use in Eq. [4]. This was done by first compressing the k-space data from the

non-delayed field map acquisition before performing the previously-described ESPIRiT process to

generate nvcoil sensitivity maps. Similar to the GRAPPA calibration data, nacq number of Vcomp

matrices must be used appropriately for ntot = nslcnacq non-simultaneous slices. Finally, Eq. [4] with

ncoil = nvcoil is used to reconstruct the separated slices by using the compressed SMS acquisitions

for su and the virtual coil sensitivities for Cu,v.

fMRI Experiment Design and Analysis

For each of five healthy subjects, both a concentric ring SMS fMRI scan and a non-simultaneous

multislice (non-SMS) concentric ring fMRI scan were performed in accordance with the University

of Michigan Institutional Review Board using a GE Discovery MR750 3.0 Tesla MRI scanner and

a Nova Medical 32-channel receive head coil. The SMS and non-SMS scans each had a total

acquisition time of 240 s for the entire run. Each fMRI scan had 20-second blocks of both visual

and motor stimuli alternating with 20-second blocks of rest. The visual stimulus consisted of a

flashing checkerboard pattern, and subjects were instructed to tap the fingers on only their right

hand while the visual stimulus was present.

Functional activation for all scans was computed using the General Linear Model on detrended

magnitude data using a paradigm model waveform based on SPM’s canonical hemodynamic re-

sponse function (22). Maps of t-scores were computed using Ref. (23), which accounts for degrees

of freedom in the time-series data, and a threshold of t > 6 was used to determine voxel activation

in all scans. Counts of activated voxels were performed by manually masking visual and left motor

cortex areas, then counting the number of activated voxels within those masked regions. A different

mask was created for each subject, but all methods performed on data from one subject used the

same mask for that subject.

SMS Scan Parameters

Each SMS fMRI time frame consisted of nacq = 13 acquisitions per TR of nslc = 3 simultaneous

slices, each of which were 3 mm thick and acquired nacqdslc = 39 mm apart with no space between
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contiguous acquisitions. The SMS TR and TE were 663 ms and 31 ms, respectively. The SMS

RF pulse was created using a sum of 3 Hamming-windowed sincs, each of which was frequency-

modulated to create the 39 mm gap between simultaneous slices. The SMS RF pulses for all 5

subjects were 6.4 ms in length, and the Ernst angle for gray matter was used for the flip angle.

The calibration TR and TE in all cases were 663 ms and 31 ms, respectively. To match the

SMS scans, each calibration time frame had ntot = nslcnacq = 39 slices. Because the SMS scans

used the minimum TR for 13 acquisitions, only 13 slices of the entire volume could be acquired

per TR in the calibration scans. Therefore, a total of nslc = 3 TRs were needed for the calibration

data. The RF pulse used for the calibration scan for each subject was the corresponding single

non-modulated sinc used for the SMS scan for that subject. The calibration RF pulses for all 5

subjects were 6.4 ms in length.

Trajectory Parameters

The out-to-in concentric ring kx-ky trajectory was designed to produce a 64-by-64 image with a

22 cm FOV, and consisted of 32 equally spaced concentric circles with a sample at the k-space origin,

as shown in Figure 1a. All gradients were designed to use 150 mT/m/ms for the maximum slew

rate and 40 mT/m for the maximum amplitude. The blipped z-gradient consisted of a repeating

pattern of positive-negative-positive blips to obtain a kz trajectory that starts out at 1/FOVz for

the outermost kx-ky ring, goes to −1/FOVz for the next ring, then 0 for the next ring, and continues

with that pattern until the kx-ky-kz origin is reached, where FOVz = ntotdslc is the SMS field of

view in the through-plane direction. The scanner gradient sampling interval was 4 µs, resulting in

6612 samples for the entire concentric ring trajectory, including the initial path from the origin

to the outermost ring and the final origin sample. The number of samples located only in the

concentric rings was ndat = 5892.

GRAPPA Reconstruction Parameters

For all the GRAPPA-based reconstructions, each ring was interpolated to a constant angular ve-

locity trajectory of 208 samples, then separated into 8 angular sectors, as depicted in Figure 1a.

The GRAPPA kernel for each sector of each coil consisted of a 3-by-3 grid that weights 3 consec-

utive rings and 3 consecutive interpolated points in the angular direction, resulting in nkern = 9.

For each sector of each coil, an additional asymmetric kernel was computed for the outermost and

innermost rings, respectively. Instead of computing additional asymmetric kernels for the angular

edges, each sector was created with an overlap of 1 point along both angular edges so that the

original, non-asymmetric kernel could be used to compute all data points up to the non-overlapped

angular edge. Finally, for the sample at the k-space origin, another kernel was constructed that

uses 8 evenly spread data points from each of the innermost 3 rings. Coil compression for SG and

SP-SG used nstack = 10. For GRABSMACC, only the calibration frame was used to compute coil

compression matrices, so nstack = 1.
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Conjugate gradient with 5 iterations and finite difference regularization was used to transform

k-space data into the image domain. Theory from Ref. (24) was used to choose the regularization

parameter in terms of the desired spatial resolution in the reconstruction. The regularization

parameter for a point spread function with a full width at half maximum of 1.35 was determined,

which results in a slight degree of smoothing. However, the same regularization parameter was

used for all methods including all the GRAPPA-based, SENSE, and non-SMS reconstructions, so

all methods should have the same degree of smoothing from regularization.

SENSE Reconstruction Parameters

Each SMS scan was also reconstructed using SENSE. Conjugate gradient with 10 iterations was

used, along with the same field map, regularization parameter, and NUFFT parameters used in

the SG and SP-SG conjugate gradient computation. The number of iterations was determined by

examining the change in the solution with each iteration and using the number that resulted in

a change similar to using 5 iterations with non-SMS reconstruction. The ESPIRiT process used

a kernel of size 3-by-3 on only the central 32-by-32 region of the 64-by-64 Cartesian k-space, a

threshold of 0.02 times the largest singular value to determine the ESPIRiT calibration matrix

null space, and an eigenvalue threshold of 0.95 for the final eigenvector sensitivity maps. Coil

compression in SENSE was done with nstack = 10.

Non-SMS Scan Parameters

The non-SMS fMRI scans had ntot = nslcnacq = 39 slices per time frame to match the SMS scans.

However, the non-SMS scans used a TR of 1989 ms and a TE of 31 ms. The same RF pulse

used for the SMS calibration scans was used for the non-SMS scans, but with a different Ernst

flip angle for gray matter because of the longer TR. A separate field map acquisition was also

acquired. Conjugate gradient using NUFFTs with inhomogeneity correction and finite difference

regularization was used for reconstruction, and the coil images were combined using square-root-

sum-of-squares. The same regularization parameter and NUFFT parameters used in SG and SP-

SG were used with 5 iterations. It was found that further iterations did not produce significant

changes in the solution for non-SMS data. The non-SMS scans were also coil-compressed before

reconstruction for comparison with the SMS reconstructions. Specifically, nstack = 10 time frames

from the middle of the scan were used in a similar manner as in standard coil compression of SG

and SP-SG, with the only difference being that there were ntot = 39 different Vcomp matrices, one

for each slice.

Image Artifacts

The interslice leakage artifact and intraslice artifact using the Linear System Leakage Approach (17)

were computed for all SMS reconstruction methods by taking non-SMS data consisting of only the

middle nacq = 13 slices of the non-SMS scan of subject 5 and reconstructing them with each of the
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various SMS methods. In the notation of Ref. (17), the interslice leakage metric of (L2→1 + L2→3)

was computed, along with the intraslice artifact of (I2→2−I2). The interslice leakage artifact metric

is defined as
∑

w(|pw,1|2 + |pw,3|2)/
∑

w(|pw,1|2 + |pw,2|2 + |pw,3|2), where pw,v is the complex value

of pixel w in slice v of the 3 simultaneous slice reconstruction, and w ranges through the number

of pixels in each slice. Here, v = 1 indicates all of the 13 inferior slices in the 39 total slices, v = 2

indicates the middle 13 slices, and v = 3 indicates the superior 13 slices. The intraslice artifact

metric is defined as
∑

w(|pw,2|2− |qw,2|2)/
∑

w(|pw,1|2 + |pw,2|2 + |pw,3|2), where qw,v is the complex

value of the ground truth (non-SMS) voxel. The total image artifact of (L1→2 + I2→2 +L3→2− I2)

was computed by synthesizing SMS data from all 39 slices of the non-SMS scan of subject 5,

then reconstructing and comparing the SMS reconstruction with the original, ground truth non-

SMS slices. The total image artifact is defined as
∑

w(|pw,2|2 − |qw,2|2)/
∑

w(|qw,2|2). All artifact

computations were performed on 10 time frames of the non-SMS scan of subject 5, and the resulting

metrics and maps were computed on the average of those 10 frames.

Retained SNR

The Pseudo Multiple Replica method (25) was used to compute the retained SNR, which is equiv-

alently defined as 1/g, where g is the geometry factor in SMS reconstructions. In order to use this

method, a noise-only scan was performed on one subject, and the same process described in Ref. (5)

was used to generate a 250 image pseudo-time-series for each of non-SMS and SMS imaging with

a full 39 slices for each time frame. Finally, average 1/g values were computed over a brain-like

region of interest.

Results

Activated Voxel Counts

Figure 3a shows the mean of activated voxel counts across all 5 subjects in the visual and motor

cortex ROIs for different acquisition and reconstruction methods versus number of virtual coils.

Since ncoil = 32 for all experiments, 32 indicates no coil compression. In the Results section and

in all the Figures, the terms “SG” and “SP-SG” by themselves refer to standard coil compression

in SG and SP-SG, respectively. The terms “GRABSMACC-SG” and “GRABSMACC-SP-SG”

refer to the use of GRABSMACC in SG and SP-SG, respectively. Looking at Figure 3a, the

activated count for both GRABSMACC-SG and GRABSMACC-SP-SG remains unaffected until

the number of virtual coils is reduced to around 5. The count for SP-SG initially tracks that of

GRABSMACC-SP-SG, but has a drop at just 14 virtual coils and quickly drops far lower than

the GRABSMACC-SP-SG count. The count for SG increases towards the count for SP-SG as the

number of virtual coils decreases and similarly drops back down at 14 virtual coils. The SENSE

count also begins to decrease at 14 virtual coils. Coil compression in non-SMS imaging performed

similarly to both GRABSMACC-SG and GRABSMACC-SP-SG, with a decrease in count starting

at around 4 virtual coils.
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Figure 3: (a) Activated voxel counts: mean across all 5 subjects. (b) Normalized activated voxel
counts: mean across all 5 subjects with error bars indicating 95% confidence intervals. Before
taking the mean across subjects, the count for each method was normalized by the count using all
32 coils. (c) Falsely activated voxel counts: mean across all 5 subjects. Falsely activated voxels
are defined as active brain voxels that are outside the visual and motor cortex areas used for the
activated voxel counts in (a) and (b). A t-score threshold of 6 was used for all methods.

The counts for each method were also normalized by dividing by the count using all 32 coils.

Figure 3b shows the mean across subjects of the normalized counts for each method, along with error

bars indicating 95% confidence intervals for each mean. The normalized counts for all four methods

exhibit similar trends as they do in Figure 3a. Of note, the error bars around the normalized counts

for GRABSMACC-SG, GRABSMACC-SP-SG, and non-SMS are very small, especially for 10 to

32 virtual coils, indicating excellent reproducibility between subjects. The error bars around the

counts for SENSE are also small, but for a reduced range of 20 to 32 virtual coils. For SG and
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SP-SG, the error bars are relatively large below 20 virtual coils.

Figure 3c shows the mean of “falsely” activated voxel counts across all 5 subjects in the visual

and motor cortex areas for different acquisition and reconstruction methods versus number of

virtual coils. Falsely activated voxels are defined as active brain voxels that are outside the visual

and motor cortex ROIs used for the activated voxel counts in Figures 3a and 3b. The most striking

feature of Figure 3c is that SG and SP-SG exhibit increased false activation with just a small

amount of compression. SENSE does as well, but to a lesser extent. However, the false activation

level does not change appreciably for GRABSMACC-SG, GRABSMACC-SP-SG, and non-SMS

until approximately 5 virtual coils.

Activation Maps

Figure 4a shows the quantitative t-score activation map for one visual cortex slice of subject 5

for different combinations of method (listed at the left) and number of virtual coils (listed at the

top). The same visual cortex slice from the same fMRI time frame was reconstructed using the

indicated combination of method and virtual coils, and is shown underneath the activation map

in each entry. In other words, the underlying background image is the actual result using the

indicated reconstruction method. The non-SMS images are from a different fMRI run and are

intensity windowed differently from the SMS images due to the differing TR. Figure 4b shows the

same data as 4a, but for one motor cortex slice of subject 5.

The visual and motor cortex activation maps are very similar between all the SMS methods,

which is expected since they are all reconstructed using the same data. The non-SMS activation

pattern, however, is still quite similar to the SMS reconstruction results, indicating good functional

reproducibility in SMS fMRI. Comparing between different numbers of virtual coils, the activation

map for each method does not change much in terms of shape or location; the only noticeable

difference is a smaller activation size when the number of virtual coils becomes very small. In this

regard, these results corroborate those in Figures 3a and 3b.

Image Artifacts

Figure 5 shows the interslice leakage (L2→1 +L2→3), intraslice (I2→2− I2), and total image artifact

(L1→2 + I2→2 + L3→2 − I2) metrics for different acquisition and reconstruction methods versus

number of virtual coils. The metrics were computed using the full set of 39 slices in each time

frame. From Figure 5a, it is clear that GRABSMACC-SP-SG has the least interslice leakage out of

all the methods. The intraslice artifact shown in Figure 5b has approximately the same behavior in

all methods, except for a differing baseline level for each method. In Figure 5c, GRABSMACC-SG

and GRABSMACC-SP-SG are the best performing SMS methods in terms of total image artifact.

Figure 6 shows the actual interslice leakage, intraslice, and total image artifact maps for the 3

simultaneously acquired slices labeled as “Truth” on the right side. These images parallel the results

in Figure 5; GRABSMACC-SP-SG has the least overall interslice leakage, with similar intraslice

artifact behavior in all SMS methods. The intraslice artifact in GRABSMACC-SP-SG is larger
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Figure 4: (a) Visual and (b) motor cortex activation maps over reconstructed images for subject 5.
The underlying background image is the actual result using the indicated reconstruction method.
A t-score threshold of 6 was used for all methods. The top of each column lists the number of
virtual coils for that column. For each of (a) and (b), the same visual or motor cortex slice is
pictured for all methods and number of virtual coils. The activated voxel color scale is the t-score.

than in SENSE, but the intraslice artifact in GRABSMACC-SP-SG is mostly near the eyes and

not as much in the brain, which is the area that matters the most in fMRI.

In Figure 5a, SP-SG exhibits less interslice leakage when compared to SG, confirming the results

of Ref. (17), while SENSE falls somewhere between SG and SP-SG. Figure 5a clearly shows the

benefit of GRABSMACC on both SG and SP-SG in terms of reduced interslice leakage artifacts

with larger amounts of compression. In particular, GRABSMACC-SG and GRABSMACC-SP-SG

are the only SMS reconstruction methods that do not have increased interslice leakage with larger
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Figure 5: (a) Interslice leakage artifact metric (L2→1 +L2→3), (b) intraslice artifact metric (I2→2−
I2), and (c) total image artifact metric (L1→2 + I2→2 + L3→2 − I2) for the middle slices of a
3-simultaneous-slice-acquired volume of 39 total axial slices.

amounts of compression. In Figures 6a and 6c, both GRABSMACC-SG and GRABSMACC-SP-SG

reduce the amount of interslice leakage compared to SG and SP-SG, respectively. GRABSMACC-

SP-SG does particularly well with almost no visible interslice leakage signal, especially when com-

pared to the other 4 methods shown. In addition, Figures 6a and 6c illustrate the importance of

interslice leakage on functional activation; for all methods, the leakage signal tends to concentrate

more in the center of the image where brain matter is likely to be present, potentially affecting

activation in the areas of most interest.

The intraslice artifact, shown in Figures 5b and 6b, is very similar between all 5 SMS recon-

struction methods, and particularly so between SG and GRABSMACC-SG and between SP-SG

and GRABSMACC-SP-SG. Using 20 to 32 coils, there is very little difference between SG and
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GRABSMACC-SG and between SP-SG and GRABSMACC-SP-SG. When going below 20 virtual

coils, the GRABSMACC methods have slightly less intraslice artifact than their non-GRABSMACC

counterparts. The intraslice artifact results again mirror the results in Ref. (17) in that SP-SG has

reduced intraslice artifact compared to SG.

All the GRAPPA-based methods have similar total image artifact with all 32 coils, as shown in

Figure 5c. However, SG has slightly less total image artifact compared to SP-SG, again consistent

with Ref. (17), which explains that SP-SG trades off higher total image artifact for reduced leakage.

Using GRABSMACC for compression reduces the total image artifact to very similar levels for both
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SG and SP-SG.

Retained SNR

Figure 7 shows the average retained SNR, or equivalently, average 1/g-factor within a brain ROI

that covers all 39 slices in each time frame. The GRABSMACC-SG and GRABSMACC-SP-SG
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Figure 7: Average retained SNR, or equivalently, average 1/g-factor within brain voxels.

plots behave the most similarly to the non-SMS plot; all three have constant SNR until around 5

virtual coils. The SNR using all 32 coils for SENSE starts out at a higher level than non-SMS, but

begins to fall earlier around 14 virtual coils. The plots for SG and SP-SG are almost the same, with

an increase in SNR with 20 and 14 virtual coils. In general, the GRAPPA-based methods have a

baseline retained SNR of around 0.8 to 0.85. Figure 8 shows retained SNR maps of the same 3

simultaneous slices used in Figure 6.
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Computational Speed

Figure 9 shows the time needed for a single computer with an Intel Xeon E3-1230 3.20 GHz pro-

cessor to reconstruct the first time frame of fMRI runs of subject 5, and includes the time needed

for coil compression. The times for SG and SP-SG were virtually identical, as were the times

for GRABSMACC-SG and GRABSMACC-SP-SG, so each of the pairs were combined into a sin-
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Figure 9: Reconstruction times of the first time frame of fMRI scans of subject 5. The time
needed for field map, sensitivity map, and GRAPPA kernel generation is not included in these
reconstruction times. The time needed for coil compression is included.

gle plot, as shown in the legend of Figure 9. Construction of field maps, sensitivity maps, and

GRAPPA kernels are only done once per fMRI scan, so they were not included in the times. While

not insignificant, the time needed for them does not contribute as much relative to the overall

time needed for reconstruction of the entire fMRI scan. In all methods, the reconstruction time

increases linearly with the number of virtual coils used. The time needed for kernel computation

was around 100 seconds and 256 seconds for GRABSMACC-SG and GRABSMACC-SP-SG, re-

spectively, regardless of the number of virtual coils used. The time needed for kernel computation

ranged linearly from 4 to 100 seconds in SG, and linearly from 11 to 256 seconds in SP-SG as the

number of virtual coils increased from 1 to 32.
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Discussion

The concentric ring trajectory provides better sampling regularity for GRAPPA than a spiral, but

is longer: the readout length for the same FOV and image size using a typical spiral-in is around

20.224 ms, whereas the readout length of the proposed concentric ring trajectory was 26.044 ms.

The increase in length is mainly caused by the need to sample k-space with shorter intervals along

the trajectory right before and after the ring transitions, as shown in Figure 1b, in order to satisfy

maximum gradient slew rate constraints. In addition, each ring is sampled fully along the entire

circle before transitioning to the next smaller ring. Potential time savings could be had if one were

to start the transition before reaching the end of the full circle, although at decrease in sampling

regularity for the GRAPPA kernel. However, this readout time increase does not prevent the use

of a suitable TE for BOLD imaging.

Unlike a simple FOV shift obtained with blipped-CAIPI EPI, blips using concentric rings result

in a blur, as shown in Figure 2b. Qualitatively, when compared with blipped-CAIPI, there is

potentially less signal overlap of simultaneous slices because the signal is blurred throughout the

entire FOV, whereas in blipped-CAIPI, there is a discrete shift. Less overlap potentially results in

a better g-factor. However, using GRAPPA with non-Cartesian trajectories inevitably introduces

certain distortions in the reconstruction due to the Cartesian approximation of a non-Cartesian

trajectory that occurs when unwrapping the constant angular velocity rings into Cartesian grids.

In Ref. (5), the 1/g maps for blipped-CAIPI SE-EPI with 3 simultaneous slices averaged around

0.997, whereas the non-blipped version averaged around 0.68. Using our blipped concentric rings,

GRABSMACC-SP-SG resulted in an average 1/g of around 0.85, which is not as high as the

blipped-CAIPI results in Ref. (5), but still higher than non-blipped SMS. Using SENSE resulted

in an average 1/g of over 1 using our blipped concentric rings, possibly because the conjugate

gradient algorithm was not run quite to convergence, which could result in slight smoothing not

obvious visually. Thus, it is likely that the Cartesian approximation in the GRAPPA-based methods

reduced the retained SNR. The retained SNR, a measure of thermal noise, is not the only metric

that should be considered when evaluating a method for fMRI. While the decrease in 1/g is not

insignificant, Ref. (26) argues that physiological noise and not thermal noise dominates in many

studies. As shown in Figure 5a, GRABSMACC-SP-SG results in less interslice leakage compared to

SENSE, with fewer false activations in neighboring simultaneous slices. In addition, signal recovery

in the presence of in-plane susceptibility-induced gradients may show that the concentric-ring-in

trajectory may have utility when imaging in inferior regions of the brain.

In this work, a concentric ring trajectory was chosen to enhance sampling regularity for GRAPPA

compared to non-Cartesian trajectories such as spirals. Another benefit of concentric rings is that

they are amenable to in-plane acceleration using GRAPPA. Single-shot acquisitions can easily be

constructed for higher sampling density, while multishot acquisitions would better match B0 phase

evolution. If multiple interleaves are acquired, gross movement or physiological motion between

excitations can easily degrade the quality of the calibration, although recent work has reduced the

sensitivity losses from these issues in accelerated parallel EPI (27).
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Comparing the activation counts of SG and GRABSMACC-SG in Figure 3a, SG appears to

outperform GRABSMACC-SG since the count for SG increases as the number of virtual coils is

decreased from 32. One explanation is that autocorrelation in the data for SG increased as the

number of virtual coils initially decreased from 32, resulting in a reduction in the effective degrees of

freedom and a difference in the actual t-score significance threshold. Since the threshold was fixed

at t > 6, this resulted in an artificially increased number of activated voxels for SG. Comparing

SP-SG and GRABSMACC-SP-SG in Figure 3a and 3c, GRABSMACC-SP-SG is clearly superior to

SP-SG in both true and false activation counts. The false activation behavior seems to be strongly

related to the interslice leakage artifact results in Figures 5a, 6a, and 6c, since activation from one

slice can leak into another.

Although interslice leakage can affect the false activation, intraslice artifacts also contribute.

For example, in Figure 3c, GRABSMACC-SG exhibits less false activation than SP-SG at all levels

of compression, while in Figure 5a, GRABSMACC-SG has a higher amount of interslice leakage

than SP-SG for ≥ 10 virtual coils. However, the total image artifact shown in Figure 5c, which

contains both interslice and intraslice artifacts, shows that GRABSMACC-SG has less total artifact

than SP-SG for all levels of compression, similar to the false activation results. It should also be

mentioned that the false activation in Figure 3c is computed from all 39 slices, whereas the artifact

results in Figure 5 are not computed from all the slices; in Figure 5a the interslice leakage is from

the middle block of 13 slices out to the superior and inferior blocks of 13, Figure 5b displays the

intraslice leakage for just the middle block of 13 slices, and Figure 5c contains interslice leakage

from the superior and inferior blocks into the middle block of 13, along with intraslice leakage for

the middle block.

Also of importance is the general trend of false activation for each method in Figure 3c. With

GRABSMACC-SG and GRABSMACC-SP-SG, it is reassuring that activation results will likely

not be falsely elevated with coil compression. Excessive amounts of compression will likely hinder

GRABSMACC’s ability to detect true activation, but it does not seem to cause false activation and

lead to false positive conclusions on brain function. On the other hand, SG, SP-SG, and SENSE

all result in increased false activation with increasing compression. Also interesting is how similar

the shape of the curves for GRABSMACC-SG and GRABSMACC-SP-SG are to the shape of the

curve for non-SMS in Figures 3a and 3c. In this respect, GRABSMACC mimics the non-SMS ideal

much better than the other SMS reconstruction methods.

In Figure 5a, the interslice leakage mostly increases with a decreasing number of virtual coils, but

this is not the case for GRABSMACC-SG and GRABSMACC-SP-SG, both of which exhibit a very

slight decrease in interslice leakage when the number of virtual coils is very low. As explained by

Ref. (17), there is a trade off between interslice and intraslice artifacts for SMS imaging. Compared

to SP-SG, SG trades off higher interslice error for lower total artifact error, whereas SP-SG trades off

higher total artifact error for lower interslice error. Furthermore, the interslice and intraslice error

trade off can be tuned with weighting parameters in SP-SG. In Figure 5a, the very slight decrease in

interslice leakage with lower numbers of virtual coils in GRABSMACC-SG and GRABSMACC-SP-
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SG are likely coming at the expense of increased intraslice error. The monotonically increasing total

image artifact with decreasing coils shown in Figure 5c confirms this effect for all methods. Perhaps

the virtual coil sensitivities created by the GRABSMACC methods at low numbers of virtual coils

exhibit very good variation in the through-plane direction, but not as adequately in-plane, which

generates better slice separation but worse intraslice artifact.

In general, the SNR plots in Figure 7 behave similarly to the activation count plots in Fig-

ure 3a. Perhaps the most surprising feature of the SNR plots is that the SNR for SG and SP-SG

is higher at 14 and 20 virtual coils when compared to using all 32 coils. The SNR for SENSE also

increases slightly at 20 virtual coils, although to a lesser extent than SG and SP-SG. This behavior

is perhaps explained by the interslice leakage of these methods. It is possible that the increased

interslice leakage artifact for these methods creates an artificial, “stationary” signal in the images,

resulting in a higher signal with the same level of standard deviation and hence a higher calculated

SNR. However, once the number of virtual coils is reduced below 14, the overall degradation in

the underlying image begins to outweigh any of the artificial changes that the interslice leakage

produced. Notice that GRABSMACC-SG and GRABSMACC-SP-SG exhibit no increases in in-

terslice leakage from 32 to 5 coils, and so the SNR remains almost constant from 32 to 5 coils. In

particular, note that non-SMS has absolutely no interslice leakage, and the shape of the SNR plot

for non-SMS in Figure 7 is very similar to the shape of the SNR plots for GRABSMACC-SG and

GRABSMACC-SP-SG.

Taking into account all the results, GRABSMACC-SP-SG likely has the best preservation of

activation out of all the SMS reconstruction methods for the purposes of most fMRI studies. SG, SP-

SG, and SENSE exhibit worrying false activation and increased interslice leakage with compression.

GRABSMACC-SP-SG has the least interslice leakage, which is perhaps the most important out

of all the artifacts since it has the most potential for generating erroneous activation. In terms of

SNR, SENSE comes out on top. However, the amount of SNR that GRABSMACC-SP-SG does

possess is clearly enough to detect activation in a normal functional study. Furthermore, the SNR

is better preserved with higher amounts of compression when compared to SENSE.

The better compression for GRABSMACC and non-SMS can be explained from the Vcomp

matrices. With these two methods, a different Vcomp matrix is computed for each of the ntot =

nslcnacq number of individual slices. The SVD selects the best possible set of linear combinations

of coils to use for each individual slice, in fact tailoring the compression for each target solution.

However, with SENSE, SG, and SP-SG, only nacq number of Vcomp matrices are used, which

amounts to one Vcomp matrix for each set of nslc = 3 individual slices. The Vcomp matrices are

computed from “source” data consisting of the sum of 3 slices, which may not result in the best

set of linear combinations to use for the individual target slices. In SMS imaging, the nslc = 3

simultaneously acquired slices are separated from each other by some distance in the through-plane

direction for decreased geometry factor. This separation in space results in an SMS signal that is

the sum of 3 very different objects.

Although GRABSMACC outperforms standard coil compression in SMS reconstruction, it does
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not decrease the amount of storage needed for raw data archival, if desired. The full set of original

32 coils are used in GRABSMACC to reconstruct images in a virtual coil basis, so the raw k-space

data cannot be compressed and saved at a smaller size for later reconstruction. On the other hand,

with standard coil compression, raw data can be compressed and saved, but the standard process

is still a form of lossy compression. If enough of the signal of interest is not maintained, it cannot

be recovered once the original data is deleted.

The reconstruction times for GRABSMACC shown in Figure 9 do not differ much from SG

and SP-SG at 26 and 32 coils, and actually increase slightly above the times needed for SG and

SP-SG as the number of virtual coils is reduced below 26. This is because the W matrix has bigger

dimensions in GRABSMACC than in standard coil compression, resulting in slightly slower k-space

separation. However, the W matrix only needs to be determined once per fMRI run or once for

the entire fMRI study. The main bottleneck for image reconstruction in GRABSMACC, SG, and

SP-SG is the iterative conjugate gradient routine that transforms separated k-space data into the

image domain, and not the k-space domain slice separation process using the kernels in W , which is

just a simple matrix vector multiplication. For example, in GRABSMACC-SP-SG with all 32 coils

using a single computer with an Intel Xeon E3-1230 3.20 GHz processor, the kernel convolution

step takes a total of around 21 seconds for 1 time frame, and the remaining 370 seconds is used for

multiple conjugate gradient routines transforming k-space data for each coil into the image domain.

Therefore, at each matching virtual coil position in Figure 9, GRABSMACC takes longer than SG

and SP-SG, but not by much compared to the total time needed. On the other hand, unlike the

GRAPPA-based methods, SENSE uses conjugate gradient once, albeit on a larger problem, to

separate the slices directly into the image domain. For this reason, GRABSMACC becomes ever so

slightly slower than SENSE at 14 virtual coils and below. We also note that while non-Cartesian

SENSE most likely requires the use of an iterative reconstruction, GRABSMACC can easily be

implemented with a non-iterative reconstruction like the conjugate phase reconstruction (28), which

would substantially decrease the reconstruction time even further.

The main benefit of GRABSMACC over standard coil compression in SG, SP-SG, and SENSE

is better preservation of activation with the reduction in number of virtual coils. Since activation

is preserved so much better in GRABSMACC versus the other methods, a much smaller number of

virtual coils can be used in GRABSMACC with equivalent activation performance but less compu-

tational burden. For example, GRABSMACC-SP-SG with 10 virtual coils results in essentially the

same activation as with all 32 coils, no increase in false activation, no increase in interslice leakage,

no decrease in SNR and negligible increase in intraslice and total image artifact. For SENSE, one

would need 20 virtual coils for activation and SNR to remain unaffected compared to using all 32

coils, although the interslice leakage is increased. From Figure 9, GRABSMACC-SP-SG with 10

virtual coils takes about 54% as long as SENSE with 20 virtual coils, which translates to time sav-

ings on the order of several hours when reconstructing multiple fMRI studies. A similar argument

can be made when comparing GRABSMACC-SP-SG to SP-SG, with the added fact that SP-SG

has even more interslice leakage when compared to using 32 coils, and likely more false activation
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as well.

Buehrer et al. (10) proposed a coil compression method that uses Principle Component Analysis

on coil sensitivities to compute compression matrices that reduce reconstructed image noise. Their

method requires the formation of coil sensitivities for superimposed voxels, which is easily done

for undersampled Cartesian trajectories. However, with a concentric ring and blipped z-gradient

readout, the aliasing pattern is not a trivial shift in some direction, but a blur in many directions.

This makes it impractical to use their method to reduce image noise in our case. On the other hand,

GRABSMACC can be easily used with Cartesian SMS fMRI. Future work may involve comparing

the activation performance of GRABSMACC with other noise reducing compression methods, as

well as investigating the compression performance of GRABSMACC using different numbers of

simultaneous slices.

Conclusions

Coil compression is frequently used to reduce the computational time and memory required to

reconstruct parallel imaging data and becomes increasingly beneficial as the number of coils in-

creases. GRABSMACC is a practical method for coil compression in SMS fMRI and retains func-

tional activation better than standard coil compression techniques used with SMS imaging and

reconstruction. Experiments presented indicate that SMS fMRI scans using 32 receive coils and 3

simultaneous slices can be compressed down to approximately 31% of their original size without

any significant loss of functional activity.
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